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ABSTRACT 

The t h e r m a l  conductivity of the e l ec t ron  gas  plays a n  i m p o r t a r t  p a r t  in  

de t e rmin ing  the prof i les  of e l ec t ron  and ion t e m p e r a t u r e  in the uppe r  a t m o s p h e r e .  

P r e v i o u s  ca lcu la t ions  have been  based  upon the t h e r m a l  conductivity d e r i v e d  f o r  

a ful ly  ionized g a s .  

n e u t r a l  gas  p a r t i c l e s  m u s t  be introduced.  In th i s  pape r  a n  a n a l y s i s  is m a d e  of 

the effect  of e l e c t r o n - n e u t r a l  par t ic le  co l l i s ions  and a n  a p p r o p r i a t e  e x p r e s s i o n  

is developed f o r  the e l ec t ron  t h e r m a l  conductivity which is appl icable  to a weakly 

ion ized  p l a s m a .  

of n e u t r a l  p a r t i c l e s  is of impor t ance  dur ing  both d a y  and night a t  a l l  a l t i tudes  

below 220 k m .  

t e r m  can  be neglec ted  in the e l ec t ron  e n e r g y  ba lance  equat ion.  

d e r i v e d  e x p r e s s i o n  f o r  the effective e l ec t ron  t h e r m a l  conductivity,  a n  examp] . ,  

of ca lcu la ted  t e m p e r a t u r e s  c h a r a c t e r i s t i c  of quiet  s o l a r  conditions is  p r e j r  G t c  CI 

In ae ronomic  conditions however ,  the contr ibut ion made  by 

It is found tha t  a c o r r e c t i o n  t e r m  needed to include the e f fec t  

In f ac t ,  a t  a l t i tudes below 135 k m  i t  a p p e a r s  that  the conduct ion 

Using the 



J 

I. - INTRODUCTION 

There have been many recent  measurements of e l ec t ron  and ion 

temperatures i n  the  ionosphere which have involved s a t e l l i t e ,  rocket and 

ground based techniques.  

shown t h a t  throughout t he  day and during much of the  n igh t  t he re  e x i s t  

considerable  d i f f e rences  between t h e  temperatures of t h e  charged and 

n e u t r a l  gases.  

va lues ,  it is  genera l ly  agreed t h a t  t h e  gross  f e a t u r e s  of the  r e s u l t s  

above 150 km can be explained by assuming t h a t  photoionizat ion i s  the  

p r i n c i p a l  source of heat ing i n  the  daytime e l ec t ron  gas. 

s i v e  review of cu r ren t  experimental techniques and r e s u l t s  has been 

given by Evans (1965). 

Without exception these  inves t iga t ions  have 

While s p e c i f i c  experiments y i e l d  a range of temperature 

A comprehen- 

The problem of ca l cu la t ing  t h e o r e t i c a l  values  of e l ec t ron  and 

ion  temperatures i n  the  upper atmosphere i s  d i f f i c u l t .  

The f i r s t  s tudy of the e f f e c t  of photoelectrons i n  heat ing the  

ambient e l ec t rons  of the  ionosphere appears t o  have been made by 

Drukarev (1946) who derived an  e x p l i c i t  expression f o r  the  d i f f e rence  

between the charged and neu t r a l  p a r t i c l e  temperatures i n  terms of t h e  

average energy of e l ec t rons  c rea ted  through photoionizat ion.  

A more comprehensive s tudy of t h e  e l ec t ron  gas  energy balance 

was  made by Hanson and Johnson (1961), demonstrating the  importance of 

energy introduced i n t o  the  e lec t ron  gas by photoelectrons.  It was shown 

t h a t  t h i s  process  a lone  could c r e a t e  la rge  d i f f e rences  between e l ec t ron  

and n e u t r a l  gas temperatures i n  t he  a l t i t u d e  range 150-350 km. Later  

papers by Hanson (1963), Dalgarno e t  a l .  (1963), and Geisler and 

Bowhill (1965a) success ive ly  developed the  t h e o r e t i c a l  problem i n  g r e a t e r  

d e t a i l  by inproving our knowledge of t he  var ious  terms which e n t e r  i n t o  

t h e  energy balance equations for the  e l ec t ron  and ion  gases.  
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In this paper we continue the study of thermal nonequilibrium 

in the upper atmosphere, being primarily concerned with the influence of 

heat conduction through the electron gas, the way in which the neutral 

atmosphere acts to reduce the thermal flux, and the net effect this has 

upon calculations of electron and ion temperatures. 

The energy balance equation for the electron gas of the ionosphere 

can be written as 

- P  - L  - 0.r e aU 
at e e 
- 

where U is the total electron gas thermal energy, P is the rate of energy 

production in the electron gas, L is the rate of energy loss from electron e 
gas, and q is the flux of thermal energy through the electron gas. 

From Chapman and Cowling (1952) the general expression for 7; is, for a gas 
mixture in which thermal diffusion is neglected, 

e e 

2 

A q = - K V T  + 5 / 2 n  k T  -c" e e e e  

where K is the electron gas thermal conductivity, T 

temperature, n 

and Ce is the average electron diffusion velocity. 

For a complete analysis of the problem of electron and ion temperatures it 

is necessary to consider the coupled set of second order, nonlinear differen- 

tial equations describing the heat balance and number density of the charged 

particle gases. In fact, at the present time it is not possible to separate 

cause and effect between changes in electron temperature and density. 

solution to the complete problem is very complex and will require considerable 

effort. 

and ion densities are known at each altitude and that we have a quasi-equili- 

brium density condition such that 5 - 0 .  In +is approximation equation (2) 

is the electron e 
is the electron number density, k is Boltzmann's constant, e A 

The 

A first start can be made, however, by assuming that the electron 

e 
become8 
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and t h e  only term i n  the  hea t  f l u x  equation arises from a gradien t  i n  

t h e  e l ec t ron  temperature. 

The importance of t he  e l ec t ron  gas thermal conduct iv i ty  i n  de- 

termining d i s t r i b u t i o n s  of e l ec t ron  temperature was f i r s t  discussed by 

Chapman (1956) i n  app l i ca t ions  concerned with the  extension of t h e  s o l a r  

corona i n t o  in t e rp l ane ta ry  space. Hanson and Johnson (1961) i n i t i a l l y  

r e j ec t ed  the  importance of t h e  e l ec t ron  gas  thermal conduct iv i ty  on the  

b a s i s  of i t s  small va lue  r e l a t i v e  t o  t h a t  of the  neutral, atmosphere. 

Hanson (1963), however, re-evaluated the  problem and drew s p e c i f i c  a t t e n -  

t i o n  t o  t h e  cont r ibu t ion  which t h e  thermal conduct iv i ty  makes i n  keeping 

t h e  e l ec t ron  temperature gradient  small a t  high a l t i t u d e s  for a low a l t i -  

tude energy (photoionization) source. Later, Geisler and Bowhill (196Sa) 

made extensive ca l cu la t ions  of e lec t ron  temperatures which included t h e  

e f f e c t  of conduct ion. 

A bas ic  assumption i n  a l l  of these  s t u d i e s  has  been t h a t  t he  

e l e c t r o n  gas  thermal conduct ivi ty  is c o r r e c t l y  given by t h e  expression, 

-1 -1 -1 K = 7,7 x 10 Te ”* ev cm sec OK , (4) 

which was derived o r i g i n a l l y  by Sp i t ze r  and HLtrm (1953) f o r  a f u l l y  ionized 

gas. 

borndary wmjitions a$plyhg t o  equatim(1) s ince  it accepts  t h a t  t he  energy f l u x ,  

given by equat ion (3), i s  inaependent of t he  n e u t r a l  atmosphere densi ty .  

This r e s u l t ,  however, can not  apply t o  a s i t u a t i o n  where t h e  t o t a l  gas mix- 

t u r e  is only weakly ionized and e l ec t ron  energy t r anspor t  is l imited by 

e l e c t r o n  c o l l i s i o n s  with the  neu t r a l  gases  r a t h e r  

c o l l i s i o n s .  

This  form f o r  t h e  thermal conduct iv i ty  has  important consequences upon tb 

than by charged p a r t i c l e  

For t he  ionosphere t h e  e s s e n t i a l  problem is  t o  der ive  an exprerr- 

s i o n  for t h e  t o t a l  e l ec t ron  thermal conduct iv i ty  which incorporates  t he  

e f f e c t s  of both charged and neu t r a l  p a r t i c l e  c o l l i e i o n s .  I n  sec t ion  XI 
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t h i s  de r iva t ion  i s  made on the  b a s i s  of a mean f r e e  path method, y i e ld ing  

a genera l  expression f o r  t he  thermal conduct iv i ty  which i s  v a l i d  f o r  a plasma 

having an a r b i t r a r y  degree of ion iza t ion .  In  sec t ion  I11 t he  der ived re- 

s u l t  i s  appl ied  t o  t he  problem of c a l c u l a t i n g  p r o f i l e s  of e l ec t ron  and ion 

temperatures and it i s  shown t h a t  t he  n e u t r a l  atmospheric gases exe r t  a 

s i g n i f i c a n t  inf luence a t  a l l  times on t h e  temperature p r o f i l e s .  

11.- ELECTRON GAS THERMAL CONDUCTIVITY 

The ca l cu la t ion  of the  e l ec t ron  gas thermal conduct iv i ty  d i f f e r s  

from t h e  usual  gas k i n e t i c  de r iva t ions  i n  t h a t  w e  are not concerned wi th  

the  t o t a l  energy t ransported by the  mixture of charged and n e u t r a l  par- 

t icles,  but  only with t h a t  por t ion  which t r a v e l s  through t h e  e l ec t ron  gas 

i n  response t o  grad ien ts  i n  e l ec t ron  temperature. The most convenient 

approach t o  t h i s  problem l ies  i n  the  mean f r e e  path technique which per- 

m i t s  a separa t ion  of the  c o l l i s i o n  e f f e c t s  of each component wi th in  a 

weakly ionized gas. 

v i t y  can be derived 

a cons idera t ion  of charged and n e u t r a l  p a r t i c l e  c o l l i s i o n s .  

of f ind ing  the  e f f e c t i v e  e l ec t ron  thermal conduct iv i ty  is  then reduced t o  

t h e  determination of appropr ia te  expressions f o r  t he  ind iv idua l  conducti-  

v i t i e s .  

Using t h i s  method the  t o t a l  e l ec t ron  thermal conducti-  

i n  terms of component conduc t iv i t i e s  which arise from 

The problem 

From equation (3) and the  work of Chapman and Cowling (1952) , t he  

e l ec t ron  energy f l u x  a r i s i n g  from a g rad ien t  i n  e l e c t r o n  temperature 

po r t iona l  t o  the  e lec t ron  thermal conduct iv i ty ,  K', given by 

Pro- 

- 
K' = 314 ne ve k A (5) 

- 
where n is  the  e l ec t ron  dens i ty ,  v 

k i e  Boltzmann's cons tan t ,  and A i s  t h e  e l e c t r o n  mean f r e e  path.  

is  the  average e l e c t r o n  v e l o c i t y ,  e e . 
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. 

I n  a f u l l y  ionized gae t h e  electron mean f r e e  path is determined 

by t h e  e f f e c t  of c o l l i s i o n s  w i t h  ions  and, t o  a f e s se r  ex ten t ,  wi th  o ther  

e lec t rons .  

account the  presence of n e u t r a l  p a r t i c l e s  s ince ,  f o r  s u f f i c i e n t l y  l a rge  

n e u t r a l  p a r t i c l e  concentrat ions,  t h e  f r e e  path w i l l  determined by e lec t ron-  

n e u t r a l  c o l l i s i o n s  alone. 

e l ec t ron  f r e e  path as 

I n  a weakly ionized gas ,  however, it is  necessary t o  take i n t o  

To introduce these  e f f e c t s  w e  express the  t o t a l  

where n i s  a p l i i c l e  number dens i ty  and Q i s  t he  appropriate  s ca t -  

t e r i n g  c r o s s  sec t ion  f o r  t h e  j - t h  species .  Equation (6) may be f u r t h e r  

decomposed a8 

1 j 

h 

where A is t he  electron-charged p a r t i c l e  f r e e  path and 
C 

is t he  e lec t ron-neut ra l  f r e e  path which includes the e f f e c t s d  n d i f f e r e n t  

n e u t r a l  gas species .  

With equations (7) i t  is now poss ib le  t o  rearrange equation (5) 

and t o  write the  e l ec t ron  thermal conduct iv i ty  as 

where K 

K 
n- th  species where charged p a r t i c l e  c o l l i q i o n s  are unimportant. This 

r e s u l t  is i d e n t i c a l  with the  more c o m n  thermodynamic problem of t h e  

hea t  conduct iv i ty  of two combined s l abs  of in su la t ing  materials. 

is t he  e lec t ron  thermal conduct iv i ty  of a f u l l y  ionized gas and i 
is t he  conduct ivf ty  of e l ec t rons  i n  a very dense n e u t r a l  gas of t he  n 
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I Equation (8) shows t h a t  a t  low n e u t r a l  p a r t i c l e  d e n s i t i e s  where An arid 

K become l a r g e ,  K' zK., while  f o r  lar e n e u t r a l  p a r t i c l e  d e n s i t i e s  An 
n 1 b 

shown t h a t  under such condi t ions  the  thermal conduct iv i ty  becomes aniso-  

t r o p i c  wi th  d i f f e r e n t  values  p a r a l l e l  and perpendicular t o  the  f i e l d  l i n e s .  

While t h e  component of conduct iv i ty  p a r a l l e l  t o  the  f i e l d  l i n e s  i s  the  

same as der ived here f o r  t he  f i e l d - f r e e  case ,  t h e  perpendicular  component 

i s  reduced by the  f a c t o r  1 + o 
quency and T is  e s s e n t i a l l y  a mean t i m e  between c o l l i s i o n s .  Since 

7 -1 8 
o - 10 sec 

mosphere, i t  i s  found t h a t  t h e r e  w i l l  be e s s e n t i a l l y  no energy conducted 

I 
2 2  

T , where w i s  the  e l ec t ron  cyc lo t ron  fre- 

magnetic f i e l d  and a t -  and T - 10 / nn sec f o r  the  e a r t h ' s  

and K become small# leading t o  K'  1/ L (1/K ) . n n n 

thraugh t h e  e l ec t ron  gas perpendicular  t o  the  magnetic f i e l d  f o r  a l t i t u d e s  

above about 70 km. Thus, only the  component of CZY p a r a l l e l  t o  the  f i e l d  

w i l l  be  e f f e c t i v e  i n  t r anspor t ing  energy through t h e  e l e c t r o n  gas. 

r e s u l t ,  t he  thermal conduct iv i ty  der ived here  w i l l  be considered as the  com- 

ponent p a r a l l e l  t o  t h e  d i r e c t i o n  of t h e  magnetic f i e l d  l i n e s  and the  e f f e c t  

of t he  perpendicular component w i l l  be ignored. 

e 
As a 

The second e f f e c t  which must be considered a r i s e s  from the  pOSSi- 

b i l i t y  of d i f f e r e n t  thermoelectr ic  effects i n  a plasma. 

the  grad ien t  of e lec t ron  temperature t h e r e  w i l l  be both a flow of energy 

and a f l u x  of e lec t rons .  

t i o n s  appropr ia te  t o  t h i s  s i t u a t i o n  and conclude t h a t  i n  order  f o r  t h e r e  t o  

be no divergence of e l e c t r i c  c u r r e n t  it i s  necessary  f o r  a secondary e k e -  

t r i c  f i e l d  t o  be  es tab l i shed  wi th in  t h e  plasma which reduces the  e l e c t r o n  

As a consequence of 

S p i t z e r  and H H ~  (1953) have analyzed the  condi- 

. 
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. 
thermal conduct iv i ty  by t h e  f a c t o r  E = 0.419. 

been s p e c i f i c a l l y  der ived f o r  electron-charged particle c o l l i s i o n s ,  i t  i s  

poss ib le  t o  extend the  concept t o  include e l ec t ron -neu t r a l  i n t e r a c t i o n s  as 

wel l .  

can be appl ied  d i r e c t l y  t o  the  case of a weakly ionized gas. 

t h e  e f f e c t i v e  va lve ,  K, f o r  t h e  t o t a l  thermal conduct iv i ty  t o  be K = E K'. 

Although t h i s  f a c t o r  has 

For t h e  present  purposes it is assumed t h a t  the f a c t o r  E - 0.419 

Thus, w e  take 

The c a l c u l a t i o n  of an accura te  expression f o r  t he  e f f e c t i v e  ther -  

ma l  conduct iv i ty  of t he  e l ec t ron  gas r equ i r e s  a knowledge of both Ki and Kn. 

The de r iva t ion  of K 

s i n g l y  charged ions  having Maxwellian v e l o c i t y  d i s t r i b u t i o n s  has been made 

by S p i t z e r  and H Z m  (1953). 

for a f u l l y  ionized gas composed of e l ec t rons  and i 

They f i n d  

(kTe)5'2 67 

Ki m 'I2 e4 I ~ A  e 

k 

which, w i th  6 = 0,225 and 1nA - 15, reduces t o  equation (4). 
7 

The de r iva t ion  of t h e  e l ec t ron  gas thermal conduct iv i ty  which 

t akes  i n t o  account only t h e  e f f e c t s  of e l ec t ron -neu t r a l  p a r t i c l e  c o l l i s i o n s  

can be based upon the  work of Chapman and Cowling (1952) f o r  a Lorentzian 

gas .  The genera l  expression f o r  t h e  e l ec t ron  thermal conduct iv i ty  i s  

K = 1 / 3 k n  n 
n e t n [ { ~ , i ) - ( i i . i  

where 0 

- . 1 n - m  2 
V 

VL 2 

e 
en 2 n n  e n  n z  Jf e ['" 2k T e - 2 
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2 
e V 

d 3 f  , 3 2  e 
en e n  

Sf 
2n n n 

and 

@(l) (v,) = ( 1  - cos 6 )  v cr (13) s i n  8 de. en s e 

I n  these equation f r ep resen t s  t he  e l e c t r o n  v e l o c i t y  d i s t r i -  
3 2  

e e 

e 
bution funct ion,  v i s  the  e l e c t r o n  v e l o c i t y ,  ti v i s  a v e l o c i t y  space 

volume element, 8 i s  the  c e n t e r  of mass s c a t t e r i n g  angle ,  and a(e) i s  t h e  

electron-neutral  d i f f e r e n t i a l  s c a t t e r i n g  c ros s  sec t ion .  

By means of t he  d e f i n i t i o n  of t he  v e l o c i t y  dependent momentum 

t r a n s f e r  c r o s s  sec t ion ,  qD, (Banks, 1966a) i t  i s  poss ib l e  t o  reduce 

equation (12) t o  the form 

dl) - v q (v ) /2n  (13) en e D e  

which is similar i n  form t o  t h e  v e l o c i t y  dependent mmr~iurn  t r a n s f e r  co l -  

l i s i o n  frequency, v , given by en 

Thus, by taking account of t h e  n e u t r a l  p a r t i c l e  d e n s i t i e s  appearing i n  

equations(l1a-c) i t  i s  poss ib l e  t o  show t h a t  equation (10) involves terms 

depending upon the  d i f f e r e n t  velocity-weighted averages of t h e  inverse c o l -  

l i s i o n  frequency o r ,  conversely,  t h e  mean c o l l i s i o n  i n t e r v a l  between elec- 

t ron-neutral  c o l l i s i o n s .  

I n  order  t o  reduce equations (Ila-c) t o  o b t a i n  Kn,  i t  is neceesary 

Th i s ,  t o  evaluate  @ ( l )  (v ) f o r  t h e  problem of e l e c t r o n - n e u t r a l  c o l l i s i o n s .  

i n  general ,  i s  d i f f i c u l t  s ince  t h e r e  are a number of e f f e c t s  which de te r -  

mine t h e  a c t u a l  energy dependence of t h e  s c a t t e r i n g  c r o s s  sec t ions .  

en e 
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Only f o r  c e r t a i n  simple in t e rac t ion  models i s  it poss ib l e  t o  obta in  analy- 

t ical  so lu t ions .  

approach has been introduced which is based upon the  thermal conduct iv i ty  

appropr ia te  f o r  elastic sphere c o l l i s i o n s .  

Cowling (1952) the  thermal conduct ivi ty  for elastic e l ec t ron -neu t r a l  c o l -  

l i s i o n s  where a(@ is independent of the  e l ec t ron  v e l o c i t y  and s c a t t e r i n g  

angle  is 

To overcome t h i s  d i f f i c u l t y  an a l t e r n a t i v e  method of 

From t h e  work of Chapman and 

2 8k T l / 2  1 
n 3  --(:) '(<) - Q 

where Q is t h e  e l ec t ron -neu t r a l  s c a t t e r i n g  c ros s  sec t ion .  This  approxi- 

mation is accura te  for n e u t r a l  gases such as He and 0 but  f o r  o t h e r s ,  such 

as 0 and N2, i t  ignores  the  increases  i n  c r o s s  sec t ion  which occur a t  t h e  

higher  e l ec t ron  v e l o c i t i e s .  To take  these  v a r i a t i o n s  i n t o  account i t  has 

been found adequate t o  introduce t h e  average momentum t r a n s f e r  c r o s s  sec t ion ,  

QD, i n t o  equation (15) i n  p lace  of t he  elastic c r o s s  sec t ion  Q. 

of t h e  v e l o c i t y  dependent momentum t r a n s f e r  c r o s s  sec t ion ,  qD, w e  have 

2 

- 
I n  terms 

Hence, t he  approximation involved is e s s e n t i a l l y  t h a t  of replacing equa- 

t i o n s  ( l l a - c )  by t h e  terms 

2 m v  

e 
e n  e 

2 
- 1  1 

2 2  (->Sf. [= - 5  2 3 v e & e (1 7b) 

2 kT e QD n n  e n  
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. 
which can be solved immediately to give 

The error involved in this process has been found to be less than 

2% for simple power law dependences of the cross section. Since the actual 

values of q (v ) are only known to within 20% for 0 and N the approxima- 

tion appears to be adequate, 

Banks (1966a) in an analysis of electron collisions. For the atmospheric 

gases we adopt 

D e  - 2 2' 
Expressions for Q have been derived by D 

(19a) 
2 

cm , 
- 
QD(N2) - 2.82 (1 - 1.21 x T ) Tell2 x e 

(19b) 
-16 2 - 

QD(02) - 2.2 (1 + 3.6 x T 'I2) x 10 cm , e 

2 P,(o) = 3.4 x cm . 

In terms of K and K the effective electron thermal conductivity i n 
now becomes, including the thermoelectric factor, 

5 5/2 

(20) 
e -1 -1 7.7 x 10 T 

K -  ev cm sec O K  

4 q  T 2  - 
n "n QD 1 + 3.22 x 10 

e 
where the sumnation in the denominator 

species present. 

duces to equation (4) derived by Spitzer and Harm (1953) for a fully 

ionized gas. At the opposite extreme, hawever, the correction factor 

is large and the thermal conductivity becomes 

is taken over all neutral gas 

For low neutral particle densities this expression re- 

. 
1 /2 23.9 n T 

r -  
e e  -1 -1 OK-l K -  ev cm sec I 
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which shows the  r e l a t i v e  i n s e n s i t i v i t y  of the  e l ec t ron  thermal conduct iv i ty  

t o  changes of temperature in  a dense n e u t r a l  atmosphere. The t r a n s i t i o n  

between the  two l imi t ing  condi t ions i n  shown i n  Figure 1 where the  thermal 

conduc t iv i ty  is  p lo t t ed  f o r  severa l  va lues  of T as a funct ion of the  
n -  In "e QD. Since K is independent of t he  i d e n s i t y  reduced c r o s s  sectior 

number d e n s i t i e s ,  t he  departure  of t h e  curves  from the  ho r i zon ta l  i nd ica t e s  

t h e  e f f e c t  of t h e  n e u t r a l  gases. 

n e 

As an example of t h e  practical importance of t he  inf luence of 

t he  n e u t r a l  atmosphere upon the  e l e c t r o n  thermal conduct iv i ty ,  w e  may 

i n v e s t i g a t e  a t y p i c a l  daytime condi t ion.  From t h e  F l i g h t  606 da ta  of 

Spencer, e t  a l .  (1965) i t  was found t h a t  a t  160 km T = 1208 OK, 

n(N2) = 1.24 x 10" c m  , and n = 2.1 x 10 c m  . To supply the  missing 
e 

n e u t r a l  p a r t i c l e  d e n s i t i e s  w e  use a 1000° atmospheric model (J 1.5 5D) 

of Nicolet (1967) t o  obta in  n(0) 9 7.41 x 10 c m  

With these  parameters t he  daytime atmospheric e f f e c t  l eads  t o  a f a c t o r  of 

4.2 decrease i n  the  e l ec t ron  thermal conduct iv i ty  below t h a t  predicted f o r  

a f u l l y  ionized gas. 

r a p i d l y  i n  proport ion t o  the  neu t r a l  atmosphere concentrat ion.  

f o r  example, it is found t h a t  there  i s  e s s e n t i a l l y  no thermal conduction i n  

the e l e c t r o n  gas.  

e -3 5 -3 

9 -3 9 -3 and n(02) = 2.95 x 10 c m  

, 

. 

For lower a l t i t u d e s  the  reduct ion f a c t o r  increases  

A t  100 km, 

The ionospheric  s i t u a t i o n  during t h e  night t ime is gene ra l ly  des- 

c r ibed  by low va lues  of Te i n  comparison wi th  t h e  daytime. However, be- 

cause the  e l ec t ron  d e n s i t y  may decrease by a f a c t o r  of lo2 i n  the  n ight -  

t i m e  E-region, i t  i s  found t h a t  t h e  e f f e c t i v e  conduct iv i ty  is substan- 

t i a l l y  less than t h e  f u l l y  ionized gas conduct iv i ty  through a t  least 220 km. 

As a s p e c i f i c  example, t h e  radar  d a t a  of Doupnik and Nisbet (1966) taken 

during e a r l y  morning hours i n  Ju ly ,  1965, give a t  150 km : Te = 900°K, 

n = 1.1 x 10 c m  . Using an 800°K n e u t r a l  atmosphere model (J 1.5 3D) 
3 -3 

e 
from Nicole t  (1967), t h e  ca l cu la t ed  reduct ion due t o  e l ec t ron -neu t r a l  co l -  

l i s i o n s  is  i n  excess of 1800. Since the  condi t ions  used here  are t y p i c a l  
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Fig. 1 . -  Electron Gas Thermal Conductivity. The e f f e c t s  of e l a s t i c  c o l l i s i o n s  between 
electrons and neutral gas part ic les  in  reducing the thermal conductivity be- 
low the values for a f u l l y  ionized gas are seen i n  the bending of the  curves 
from the  horizontal. 
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of nighttime conditions at and below 150 km, it app ar th t th re will 

essentially no thermal conduction acting in the nighttime electron gas 

witHin the ionospheric E-region. 

These results indicate that there is a substantial decoupling of the 

high 

the E-region. If electron-neutral collisions were not present, large 

amounts of electron thermal energy could be conducted rapidly to low al- 

titudes. The net effect of this would be to lower the calculated values 

of T at higher altitudes, 

altitude electron gas from the important electron energy losses of 

e 

There have been several laboratory measurements of the electron 

thermal conductivity (Goldstein and Sekiguchi, 1958 ; Sekiguchi and 

Herndon, 1958 ; Rostas, et al., 1963). In each of these experiments it 

w a s  found that the electron thermal conductivity was independent of the 

neutral gas pressure. However, analysis of the experimental conditions 
u s h g  equation (20) has shown that in all cases the laboratory parameters 

and n were not adequate to lead to any appreciable reduction in n of Te, ne 
the conductivity below that predicted by equation (4). 

111.- APPLICATION 

The reduction in the electron gas thermal conductivity brought 

about by the neutral atmosphere at altitudes below 200 km plays an important 

part in determining the calculated profiles of electron and ion temperature 

in the ionosphere. In this section the problem of equilibrium electron and 

ion temprrature profiles 

energy produiion, loss, and conduction. It is shown that the use of the 

uncorrected 

particle temperatures at altitudes above 200 km. 

is presented for steady state conditions between 

conductivity can lead to a considerable underestimate of charged 

For the following calculations, which are intended to emphasize 

the importance of the neutral atmosphere upon the electron gas thermal 
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conduct iv i ty ,  it is convenient t o  use  models of t h e  n e u t r a l  and charged 

p a r t i c l e  concentrat ions which are c h a r a c t e r i s t i c  of q u i e t  s o l a r  condi t ions .  

Fur ther ,  it i s  assumed t h a t  t he  heat ing of t he  ionospheric  e l ec t ron  gas i s  

brought about only through t h e  excess k i n e t i c  eilergy c a r r i e d  by e fec t rons  

c rea t ed  through photoionization. The con t r ibu t ion  of e l ec t ron  thermal 

energy s tored  a t  high a l t i t u d e s  wi th in  the  exosphere, discussed by Geisler 

and Bowhill (1965b), i s  not  included. 

The rate of energy production wi th in  t h e  e l e c t r o n  gas a r i s i n g  

from photoelectron heat ing f o r  q u i e t  solar condi t ions  wi th  s o l a r  zen i th  

angle  X - 0 is  l i s t e d  in Table 1. These values  have been derived i n  an 

ana lys i s  of e lec t ron  and ion temperatures f o r  t he  d i f f e r e n t  s o l a r  condi- 

t i o n s ,  the  d e t a i l s  of which w i l l  be presented i n  a subsequent paper. 

The neu t r a l  atmospheric model used i n  t h i s  s tudy has been taken 

from t h e  work of Nicolet  (1967) and corresponds t o  h i s  model J 3D which, 

with a thermospheric temperature of 8OO0K, c l o e e l y  approximates the  condi- 

t i o n s  found i n  t h e  upper atmosphere during per iods of minirmim s o l a r  a c t i v i t y .  

1.5 

For a model of the  e l ec t ron  and ion d e n s i t i e s  t h e  rocket  r e s u l t s  

of Bauer, e t  a l .  (1963) have been adopted f o r  a l t i t u d e s  below 300 km with  

t h e  assumption t h a t  only 0 ions a r e  present ,  t h e  e f f e c t  of NO being ne- 

g lec ted .  

i n t eg ra t ion  of t he  equation 

+ + 
Above 300 km t he  e l e c t r o n  d e n s i t y ,  ne,  has  been found through 

which corresponds to  a conf igura t ion  of d i f f u s i v e  equi l ibr ium when the re  

18 only a s i n g l e  ion spec ies  of mass m 

and T 

e l ec t ron  dens i ty  a t  an a l t i t u d e  z above t h e  re ference  level a has  been ob- 

ta ined  numerical ly  as an i n t e g r a l  p a r t  of t h e  c a l c u l a t i o n s  of t he  e l e c t r o n  and 

ion temperature p ro f i l e s .  

and temperature T Since both Te 
i 1' 

are a l t i t u d e  dependent i n  a complex fash ion ,  t h e  a c t u a l  value of t h e  i 

Table 1 l is ts  t h e  e l e c t r o n  d e n s i t y  va lues  which 

4 
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were found upon termination cf the  ca l cu la t ion  of e lec t ron  and ion tempe- 

r a t u r e s  . 
TABLE 1 : Model atmospheric parameters 

z (W P(ev cm -3 sec -1 ) ne(1~5 cm-3) 

116 

12 8 

142 

157 

173 

192 

2 12 

234 

259 

2 86 

3 16 

349 

386 

426 

471 

52 1 

3 1.27 x 10 

4.33 

9.60 

9 .52 

6.74 

4.36 

2.48 

1.47 

8.84 x 10 

5.20 

3 -03 

1.62 

8.00 x 10 

3.49 

1.56 

6.08 x 10 

2 

1 

0 

0.52 

0.85 

1.27 

1.80 

2.30 

2.93 

3.42 

3.58 

3.41 

2.88 

2.57 

2.24 

1.89 

1.53 

1.21 

0.94 

The energy loss terms f o r  the  e l ec t ron  gas are composed of t he  

elastic losses t o  0, N and 0 described i n  Banks (1966a) and i n e l a s t i c  

r o t a t i o n a l  l o s ses  t o  N 

1965). Thus, 

+ 
2 

2 (Mentzoni and Row, 1963) and O2 (Mentzoni and Rao, 

L = + 2,47 x nen(0) [Te - T] Te 1/2 e 

+ 1.41 x nen(N2) [l - 3.84 x T 1’2] T e 1’2(Te- T) 
e 
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- 112 

- 112 

+ -3 /2 -3 -1 

+ 3.1 x 10 -I4 nen(N2)[Te - T I  Te 

+ 1.0 x nen(02) [Te- T I  Te 

+ 4 . 8  x n n(0  ) [Te- Ti] Te ev cm sec , 
e 

where T and T are the  r e spec t ive  n e u t r a l  and ion gas temperatures. 
i 

As shown by Hanson (1963) t he  ion gas temperature a t  high a l t i -  

tudes can be decoupled from t h e  n e u t r a l  gas temperature. Hence, t o  de t e r -  

mine t h e  e f f ec t iveness  of ions i n  cool ing t h e  e l ec t ron  gas ,  it is  neces- 

s a ry  t o  consider  the d e t a i l s  of t h e  ion energy balance equation which, i n  

analogy wi th  equation (l), can be w r i t t e n  f o r  a Maxwellian ion  gas as, 

- P - Li + V. (Ki V Ti).  a t  i 

Here Ui = 3/2 ni kT 

energy i s  produced i n  the  ion gas ,  L i i 
the  ion thermal conduct ivi ty .  For the  present  app l i ca t ion  it i s  found f r o m  

the  work of Chapman (1954) and Sp i t ze r  (1956) t h a t  t h e  thermal conduct iv i ty  

of t he  ion component of a f u l l y  ionized gas of e l e c t r o n s  and oxygen ions 

i s  smaller than the  e l ec t ron  conduct iv i ty  by a f a c t o r  of approximately 172. 

i s  the  ion  gas thermal energy, P i i 
i s  the  rate a t  which 

i s  the  energy loss rate, and K is  

In  f a c t ,  i f  a extension of t h e  ion conduct iv i ty  i s  made t o  include 

t h e  e f f e c t s  of ion-neut ra l  c o l l i s i o n s  a much l a r g e r  reduct ion follows. 

f o r  convenience i n  t h i s  problem w e  take  K 

pera ture  i s  a funct ion only of l o c a l  e f f e c t s .  

the ion temperature problem tak ing  i n t o  account t h e  important e f f e c t s  of 

ion thermal conduction w i l l  be presented i n  a subsequent paper. 

Hence, 

.I 0 and assume t h a t  t he  ion  tern- 
i 

A more prec i se  a n a l y s i s  of 

The rate a t  which t h e  oxygen ion gas ga ins  energy from the  e l ec t ron  

gas as a r e s u l t  of e lec t ron- ion  c o l l i s i o n s  i s  

-3 -1 
-3'2 ev c m  sec n,n(O ) [Te- Ti] Te 

+ 
pi = 4.8 x 
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For oxygen ions the energy loss is composed of terms correspon- 
+ ding to resonance charge exchange between 0 ions and 0 atoms and elastic 

collisional loss to N and 0 molecules. The appropriate expressions, 2 2 
taken from Banks (1966b) are, 

= 2.1 x n(0') n(0) [Ti + T]1'2 [Ti - T] Li 

+ 6.6 x n(O+) n(N2) [Ti - TI 
-3 -1 + 6.5 x 10 - I 4  n(O+) n(02) [Ti - T] ev cm sec . 

Equations (25) and (26) ,  when used in conjuction with equation (24) 

and a model of the neutral atmosphere, permit the solution of the coupled 

electron and ion time dependent energy balance equations. 

A direct approach has been taken to solve the coupled time depen- 
dent and ion energy balance equations. Use has been made of the implicit 

integration method of Diaz (1958) for parabolic equations to obtain a set 

of linearized mesh equations which lead to the time development of the 

electron and ion temperature profiles. 

at low altitudes is strongly coupled to the neutral gas temperature, it is 

not possible to choose the time integration elements in an arbitrary man- 

ner without introduking the possibility of numerical oscillation and even- 

tual divergence away from the correct solution. 

here it was found that at 122 km the maximum permissible time increment 

was 9 . 8  x 10 seconds. Hence, a large number of calculations were neces- 

sary to enhance the long term conduction effects. 

Because the electron temperature 

For the example given 

-2 

The boundary and initial conditions necessary to solve: the second 

order, non-linear electron energy balance equation are related to the assumed 

sources of thermal energy in the upper atmosphere. 

dition is connected to the flux of electron thermal energy entering into the 

ionosphere from the protonsphere. This problem has been discussed by Geisler 

The upper boundary con- 
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and Bowhill (1965b). For the purpose of illustrating the effect of the 

thermal conductivity upon the temperature profiles, it is not necessary 

to include this additional energy source and it is assumed that there is 

no gradient in electron temperature above 1000 km. 

The lower boundary determines the flux of electron thermal energy 

to the lower atmosphere. Because the effective thermal conductivity is 

small at altitudes below 125 km, the electron'temperature is determined 

by the local characteristics of electron energy production and loss. 

For the present problem, which considers only photoionization, it is ade- 

quate to assume that T = T at 110 km. In fact, there is very little 

effect upon the calculated temperature profiles if this condition is applied 

at higher (up to 135 km) or, of course, lower altitudes (below 100 km) . 
e 

We consider first the temperature profiles which are characteris- 

tic of minimum solar activity under equilibrium conditions with a constant 

energy production. The results, shown in Figure 2 ,  were obtained by re- 

laxing the electron and ion temperatures from initial profiles which sa- 

tisfied the equations P - L 
two energy balance equations which ignore the effect of thermal conduction. 

Nearly 1000 seconds of elapsed time were required to reach the indicated 

steady-states, defined here to be the point when (dT /dt) < 2 x 10-60K sec 

at all altitudes. Curve I, indicated in the figure, is the initial elec- 
tron temperature profile. Curve 2 is the steady state electron temperature 

which results from the use of an electron gas thermal conductivity which 

includes the effect of the neutral atmosphere. Likewise, curve 3 le the 

temperature profile which results if the conductivity is taken to be that 

of a fully ionized gae, independent of the neutral particle concentration. 

Curves 4 and 5 are, respectively, the profiles of ion and neutral particle 

temperature. 

and Pi = Li ; that is, the solutions to the e e 

-1 
e 

The effects of the effective thermal conductivity are clearly evi- 

dent at both low and high altitudes. BY permitting a large energy flux to 
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Fig. 2.- Charged and Neutral Gas Temperatures Typical of Q u i e t  So- 
lar  Conditions.  
e l ec t ron  energy balance equation which ignores hea t  con- 
duct ion through the e l ec t ron  gas. When hea t  conduction is 
included the  e l ec t ron  temperature p r o f i l e  is  s u b s t a n t i a l l y  
changed, as shown by curves 2 and 3. Curve 2 r e s u l t s  when 
an e f f e c t i v e  thennal conduct iv i ty  including t h e  e f f e c t s  of 
e l ec t ron -neu t r a l  p a r t i c l e  c o l l i s i o n s  is introduced. For 
curve 3 the  thermal conduct iv i ty  f o r  a f u l l y  ionized gas 
wae used. Curves 4 and 5 are the  ca l cu la t ed  ion and the  
aesumed n e u t r a l  atmosphere temperatures. 

Curve l is  the  so lu t ion  t o  t h e  daytime 
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flow t o  t h e  ionospheric E reg ion ,  t h e  conduct iv i ty  f o r  a i u l l y  ionized gas 

r e s u l t s  i n  a s u b s t a n t i a l  increase  i n  T a t  a l t i t u d e s  below 145 km above 

those values  found using t h e  e f f e c t i v e  conduct ivi ty .  This energy d r a i n  

t o  low a l t i t u d e s  lowers the  peak value of T from 3400 O K  t o  2600 O K  a t  

190 km. This  decrease i s  maintained a t  a l l  higher  a l t i t u d e s  throukh the  

a c t i o n  of thermal conduction and r e s u l t s  i n  a s u b s t a n t i a l  d i f f e rence  of 

8W°K f o r  the  high a l t i t u d e  isothermal  regions.  

e 

e 

The conduction term i n  t h e  e l ec t ron  energy balance equation can 

act a t  any given a l t i t u d e  as an e f f e c t i v e  eource or  s i n k  of thermal energy. 

With a c o e f f i c i e n t  of thermal conduct iv i ty  which i s  reduced a t  low a l t i t u d e s  

by the  presence of the  n e u t r a l  atmosphere the  n e t  e f f e c t  of t h i s  term can 

be s u b s t a n t i a l l y  diminished. To show t h i s  t he  r a t i o  

v. (K ‘7 T ) e 
P + v . ( K V T )  e e 

has been evaluated a t  each a l t i t u d e  f o r  both the  f u l l y  ionized and the  

dens i ty  cor rec ted  models of t he  e l ec t ron  thermal conduc t iv i t i e s .  

P 

importance of energy conduction i n  the  o v e r a l l  energy balance. 

a r e  presented i n  Figure 3 and show t h a t  the  conduction term is  substan- 

t i a l l y  reduced i n  importance when n e u t r a l  atmospheric e f f e c t  are included. 

I n  f a c t ,  even f o r  t h i s  daytime model the  atmosphere co r rec t ed  conduction 

term ( s o l i d  curve) is seen t o  c o n s t i t u t e  less than 10% of the  r a t i o  f o r  

a l l  a l t i t u d e s  below 160’lan. 

f u l l y  ionized gas thermal conduct iv i ty  (dot ted curve) leads  t o  a r a t i o  Of 

0.66 even a t  t h e  comparatively low a l t i t u d e  of 128 km. 

Since 

is the  same in  both cases  t h i s  r a t i o  g ives  a d i r e c t  i nd ica t ion  of t h e  e 
The r e s u l t s  

I n  c o n t r a s t ,  it is  seen t h a t  t he  use  of t he  

The e f f e c t  of the  n e u t r a l  atmosphere upon t h e  e l e c t r o n  thermal 

conduct iv i ty  can a l s o  be shown by consider ing t h e  reduct ion of t h e  con- 

d u c t i v i t y  below t h a t  predicted by equat ion (4). Thus, w e  t ake  

. 
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Fig .  3.- Contr ibut ion of Conduction t o  the  Electron Energy Balance. 
dashed curve ind ica tes  t he  r e l a t i v e  importance of hea t  conduc- 
t i o n  i n  t h e  e l ec t ron  energy balance a t  low a l t i t u d e s  when only 
tho f u l l y  ionized conduct ivi ty  is used. 
of e l ec t ron -neu t r a l  c o l l i s i o n s  the  conduction term is g r e a t l y  
reduced, as shown by t h e  s o l i d  curve. 

The 

By including the  e f f e c t s  
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5/2 K = a T  
e 

5 -1 ,f1/2 sec -1 but  a t  where f o r  a f u l l y  ionized gas a 

lower a l t i t u d e s  smaller values  p reva i l .  Curve 1 i n  f i g u r e  4 shows a p l o t  

of the  quan t i ty  a as a fzlnction of a l t i t u d e  f o r  t he  s t eady- s t a t e  model of 

e f f e c t i v e  thermal conduct ivi ty  discussed here.  Curve 2 represents  the  

dens i ty  independent expression. 

i s  seen a t  a l l  a l t i t u d e s  below 18C kmwhen e lec t ron-neut ra l  c o l l i s i o n s  are 

considered. The loca l  maximum centered around 128 km i s  caused by changes 

i n  the  r a t i o  T brought about by r ap id ly  increas ing  d e n s i t i e s  and tem-  

pera tures .  

7.7 x 10 ev c m  

A reduct ion by a t  least a f a c t o r  of t en  

2 
In e e  

Due t o  the p a r t i c u l a r  form of the  e lec t ron- ion  elastic energy 

exchange rate there  i s  a maximum rate a t  which t h e  ions can cool  t he  elec- 

t ron  gas which occurs a t  T 

an increas ing  funct ion of T . When T > 3 T t h e  e lec t ron- ion  l o s s  rate e e i 
decreases  wi th  increasing T and the  ion gas is unable t o  cons t r a in  the  e 
e l ec t ron  temperature. 

t he  combined e f f e c t s  of conduction and e l ec t ron -neu t r a l  energy t r a n s f e r .  

Since a t  high a l t i t u d e s  the  lo s ses  t o  n e u t r a l  p a r t i c l e s  are small, the  

in t roduct ion  of s u f f i c i e n t  energy i n t o  t h e  e l ec t ron  gas t o  cause T t o  r i s e  

above the  criticAl poin t  i n t o  the  "runaway" region mst r e s u l t  i n  an increase  

i n  T t o  the  poin t  where conduction alone carries the  excess thermal energy 

t o  o the r  sources of energy loss .  

- 3 T For T < 3 Ti ,  the  energy l o s s  rate is  
e i' e 

I n  t h i s  case a s t a b l e  equi l ibr ium must depend upon 

e 

e 

Another f a c t o r  i n  t h i s  process i s  the  p o s s i b i l i t y  of t h e  ion  

temperature r i s i n g  above the  n e u t r a l  gas  temperature.  

pera ture  a t tempts  t o  rise i n  response t o  t h e  local energy production, i t  

w i l l  raise t h e  ion  temperature i n  t h e  manner of two coupled, non-l inear  

spr ings.  

f u r t h e r  con t r ibu te  t o  the  rise i n  e l e c t r o n  temperature.  

tudes,  where neu t r a l  l o s ses  become'dominant, t h e  po in t  where T 

lo ses  i t s  physical  s ign i f i cance  s i n c e  only small inc reases  i n  Te are required 

A s  t he  e l ec t ron  tem-  

This  w i l l  diminish the  e lec t ron- ion  energy t r a n s f e r  rate and 

A t  t he  lower a l t i -  

i 3 T e 

. 

, 
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Fig.  4.- Effec t  of the  Neutral Atmosphere Upon the  Electron Thermal 
Conductivity.  
i s  poss ib l e  t o  c a l c u l a t e  a as a func t ion  of a l t i t u d e .  
e l ec t ron -neu t r a l  p a r t i c l e  c o l l i s i o n s  are ignored, a17 .7~10  , 
as shown by curve 2 ,  while  when c o l l i s i o n s  a r e  introduced, 
a i s  s i g n i f i c a n t l y  reduced, as indica ted  by curve 1. The 
l o c a l  maxiatum i n  a a t  128 km is produced by changes i n  the  

By taking K = a T, 512 ev cm-1 OK sec-1, i t  
I f  

rat i o  Te2 /ne. 
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t o  match the  decrease i n  the  e lec t ron- ion  cool ing rate. 

The problem of e l e c t r o n  runaway has been considered previously 

by Geisler and Bowhill (1965a) i n  t h e i r  s tudy of e l ec t ron  temperatures 

during a per.iod of minimum s o l a r  a c t i v i t y .  

duct ion and electron-ion energy l o s s  according t o  t h e  equat ion 

By equating l o c a l  energy pro- 

(T - Ti) -3 -1 ev c m  sec , 2 e  
e 111 312 

P = 4.7 x n e 
I e 

they found va lues  of P /n 
present  over t h e i r  e n t i r e  a l t i t u d e  range above 200 km. It must be pointed 

ou t ,  however, t h a t  it is  not  poss ib l e  t o  use equation (28) t o  eva lua te  the  

condi t ion  of runaway s ince  a t  a l l  times conduction is cons tan t ly  a c t i n g  t o  

reduce the  e l ec t ron  temperatures In  the  peak energy production regions.  

Thus, while  P /n may i n d i c a t e  runaway f o r  equation (28),  when the  c o r r e c t  

equation 

which implied that the  runaway condi t ion w a s  
e e  

2 
e e  

(T - Ti) -3 -1 - V. (K V Te) ev c m  sec , (29) - 7  2 e P - 4.7 x 10 ne 
e T 3/2  

e 

is i nves t iga t ed ,  t h e r e  may be a s u b s t a n t i a l  reduct ion i n  T 

3 Ti. 

Bowhill (1965a) ind ica tes  t h a t  above 200 km T < 3 T and runaway had no t  

been reached i n  t h e i r  model. 

T 

t i v i t y  expressions.  I n  both cases t h e  high a l t i t u d e  e l e c t r o n  temperature 

p r o f i l e s  are isothermal i n  na tu re .  

below the  value 
e 

Thus, an inspect ion of t he  ca l cu la t ed  p r o f i l e s  of Geisler and 

e i 
For the  present  c a l c u l a t i o n s  i t  is found t h a t  

< 3 Ti i n  the  p r o f i l e s  f o r  t he  cor rec ted  and uncorrected thermal conduc- e 

. 
8 

1V.- SUMMABY AND CONCLUSIONS. 

I n  ca l cu la t ing  p r o f i l e s  of e l ec t ron  temperature i n  t h e  upper 

atmosphere the  e f f e c t  of e lec t ron  thermal conduction must be included. TO 

I determine t h e  c o e f f i c i e n t  of e l e c t r o n  thermal conduc t iv i ty  appropr ia te  
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i 

t o  t he  upper atmosphere, an ana lys i s  has been made of e l ec t ron  hea t  

t r anspor t  on the  b a s i s  of a mean f r e e  path approach t o  eva lua te  t h e  

r e l a t i v e  importance of charged and n e u t r a l  p a r t i c l e  c o l l i s i o n s .  An 

e x p l i c i t  expression f o r  t h e  thermal conduct iv i ty  has  been derived using 

t h e  r e s u l t s  of S p i t z e r  and Harm (1952), Chapman and Cowling (1952), and 

Banks (1966a). A t  a l t i t u d e s  above 250 km it i s  found t h a t  t he  e l ec t ron  

gas  thermal conduct ivi ty  i s  unchanged by t h e  n e u t r a l  atmosphere and t h a t  

t h e  expression der ived by Spi tzer  and HZrm (1952) f o r  a f u l l y  ionized gas 

can be used. 

A t  lower a l t i t u d e s  e lec t ron-neut ra l  p a r t i c l e  c o l l i s i o n s  become 

e f f e c t i v e  i n  reducing the  e lec t ron  mean f r e e  path and the re  occurs a si- 

gn i f i can t  decrease i n  the value of t he  thermal conduct iv i ty  below t h a t  

predicted f o r  a f u l l y  ionized gas. I n  addi t ion ,  t h e  temperature dependence 

'I2. Since the  e f f e c t i v e  thermal changes from T 5'2 t o  a more moderate T e e 
conduct iv i ty  depends upon both the  e l ec t ron  temperature and the  weighted 

r a t i o  of n e u t r a l  t o  e l ec t ron  d e n s i t i e s ,  it i s  found t h a t  a t  n igh t ,  when 

t h e  e l ec t ron  d e n s i t i e s  are g r e a t l y  reduced, t he re  w i l l  be e s s e n t i a l l y  no 

e l e c t r o n  thermal conduction below 150 km. 

During t h e  daytime t h e  e l ec t ron  d e n s i t i e s  are l a rge  and t h e  

e f f e c t  of e lec t ron-neut ra l  c o l l i s i o n s  upon the  thermal conduct iv i ty  be- 

comes less. However, because T is  higher  during t h e  day, t he  r a t i o  

Te /ne must be evaluated i n  each case. 

Sect ion I1 f o r  q u i e t  s o l a r  condi t ions it i s  found t h a t  t h e  e f f e c t i v e  con- 

d u c t i v i t y  was  a f a c t o r  of 10 l e s s  than t h e  f u l l y  ionized conduct iv i ty  up 

t o  an a l t i t u d e  of 180 km, while a t  225 km t he re  w a s  s t i l l  a f a c t o r  of 5 

Involved. 

e 2 From the  ca l cu la t ion  given i n  

To i l l u s t r a t e  t he  e f f e c t  of t h e  n e u t r a l  atmosphere on steady- 

state temperature p r o f i l e s ,  a model c h a r a c t e r i s t i c  of q u i e t  s o l a r  condi- 

t i o n s  w a s  presented. It was shown t h a t  by reducing t h e  flow of e lec t ron  
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thermal energy to low altitudes there followed a significant rise in the 

high altitude electron temperature, Hence, previous calculations which 

have been made to derive a correspondance between measured values of electron 

temperature and rates of electron energy production probably over-estimate 

the actual energy given to the electron gas. 
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